Açımlayıcı Faktör Analizi (AFA), istatistiksel analizde veri setindeki gizli yapıları ortaya çıkarmak ve bu yapıları anlamak için kullanılan önemli bir yöntemdir. Bu eğitim seti, AFA'nın temel prensiplerinden başlayarak, adım adım bu yöntemin nasıl uygulanacağını öğretmeyi amaçlamaktadır. Eğitim boyunca, veri analizinde karşılaşılan olumsuz ve anlaşılmayan ifadelerin belirlenmesi, bu ifadelerin veriden çıkarılması gibi temel konular üzerinde durulacaktır.
İlk olarak, olumsuz ifadelerin ve anlaşılmayan ifadelerin belirlenmesi üzerine odaklanacağız. Veri setlerinde, analiz sonuçlarını etkileyebilecek hatalı veya anlaşılması zor ifadeler bulunabilir. Bu ifadelerin tespit edilmesi, verinin doğruluğunu ve güvenilirliğini artırmak açısından kritik öneme sahiptir. Eğitimin bu bölümünde, bu tür ifadelerin nasıl belirleneceği ve veri setinden nasıl çıkarılacağına dair pratik yöntemler sunulacaktır.
ANOVA tablosunda F değerinin yorumlanması, veri analizi sürecinde önemli bir adımdır. F değeri, gruplar arasındaki farkların anlamlı olup olmadığını belirlemeye yardımcı olur. Bu eğitimin bir diğer önemli bölümü, ANOVA tablosunun detaylı bir şekilde incelenmesi ve F değerinin nasıl yorumlanacağını öğretmektir.
Cronbach Alpha değeri, veri setindeki ifadelerin iç tutarlılığını ölçen bir istatistiksel yöntemdir. Eğitimin bu bölümünde, Cronbach Alpha değerinin nasıl hesaplanacağı ve yorumlanacağı üzerinde durulacaktır. Ayrıca, Reliability statistics tablosunda yer alan standardize alpha ve alpha değerlerinin anlamı ve bu değerlerin veri analizi sürecindeki önemi açıklanacaktır.
Eğitim seti, AFA işlemlerini ve faktör analizini kapsayan geniş bir müfredat sunar. Bu bölümde, KMO ve Bartlett’s testlerinin nasıl uygulanacağı ve bu testlerin sonuçlarının nasıl yorumlanacağına dair detaylı bilgiler verilecektir. KMO testi, verinin faktör analizi için uygun olup olmadığını belirlerken, Bartlett’s testi veri setindeki değişkenlerin birbirleriyle ilişkili olup olmadığını test eder.
Rotated Component Matrix tablosunun yorumlanması, faktör analizinin önemli bir parçasıdır. Bu tablo, faktörlerin nasıl döndürüldüğünü ve her bir değişkenin hangi faktörlerle ilişkili olduğunu gösterir. Eğitim boyunca, bu tablonun nasıl okunacağı ve yorumlanacağına dair örnekler sunulacaktır. Ayrıca, Total Variance Explained tablosunun yorumlanması ve değerlendirilmesi, faktör analizinde önemli bir aşamadır. Bu tablo, toplam varyansın ne kadarının faktörler tarafından açıklandığını gösterir.
Son olarak, Communalities tablosunun yorumlanması, faktör analizi sonuçlarının daha iyi anlaşılmasını sağlar. Bu tablo, her bir değişkenin toplam varyansının ne kadarının faktörler tarafından açıklandığını gösterir. Eğitimin bu bölümünde, Communalities tablosunun nasıl okunacağı ve bu verilerin analiz sürecine nasıl entegre edileceği detaylı bir şekilde açıklanacaktır.
Bu eğitim seti, veri analizi ve istatistik konularında kendini geliştirmek isteyen herkes için kapsamlı bir rehber sunar. Pratik örnekler ve uygulamalı çalışmalarla desteklenen bu kurs, katılımcılara AFA'nın tüm yönlerini öğrenme ve uygulama fırsatı sunar.
Kategori : | Eğitim ve Fen Bilimleri |
Eğitmen : | Ahmet Kara |
Eğitmen Unvanı : | Prof. Dr. |
Sertifika : | Evet |